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Owing to the heterogeneity of living tissues, it is challenging strong exchange, and hence possess one characteristic T1

to quantify tissue properties using magnetic resonance imaging. and T2 . In the middle of these two extremes are tissues
Within a single voxel, contributions to the signal may result from exhibiting weak exchange and possessing multiexponential
several types of 1H nuclei with varied chemical (e.g., 0CH20, relaxation characteristics different from the pure spin com-
0OH) and physical environments (e.g., tissue density, compart- ponents. There is no reason to believe that all tissues behave
mentalization) . Therefore, mixtures of 1H environments are preva-

as one of the three possibilities, or that a given tissue willlent. Furthermore, each unique type of 1H environment may pos-
be spatially homogeneous. Clearly more studies are neededsess a unique and characteristic spin–lattice relaxation time (T1 )
to determine an optimum model for each tissue (7–9) .and spin–spin relaxation time (T2 ) . A method for resolving these

Further complicating these models is the size of the im-unique exponentials is introduced in a separate paper (Part 1.
aged voxel (6) . Partial volume effects are seen with largeAlgorithm and Model System) and uses the direct exponential

curve resolution algorithm (DECRA). We present results from an voxels that may contain several tissues, each composed of
analysis of images of the human head comprising brain tissues. multiple spin environments. It is only at the small-voxel
q 1998 Academic Press limit that the question of which of the three models is appro-

Key Words: spin relaxation rates; magnetic resonance imaging; priate for a given tissue can be answered. Even if the voxel
MRI; multispectral tissue classification; image segmentation. size approaches the cellular level, we should expect multiex-

ponential relaxation behavior due to the heterogeneity of the
living cell anatomy.

INTRODUCTION Models for such complex systems must be manageable,
however. Technical accuracy and practical considerations

Hydrogen NMR spin–lattice and spin–spin relaxation must be balanced to achieve a robust model. The parameters
times, T1 and T2 respectively, have been used to characterize must be accessible by measurement. A few key components
living tissues (1–10) . These biological samples are com- must be identified that describe the vast majority of the
posed of complex spin systems, and several models have data. Other components may exist, but their contributions
been proposed to explain the spin relaxation behavior of are within the noise range.
such a heterogeneous system (8) . One model proposes that Traditionally, exponential fitting procedures are needed to
tissues may be composed of different nonexchanging spin measure both T1 and T2 . With all exponential fitting proce-
types and therefore possess multiexponential relaxation be- dures, the resultant relaxation times are only as good as the
havior characteristic of the sum of the individual compo- data being fit. The relationships among signal-to-noise ratio
nents. For water alone there have been as many as five of the data, time interval between points (Dt) , shortest time
different types proposed (10) . At the opposite extreme is a

data point tmin , longest time data point tmax , and calculated
model proposing that the different spin types are coupled by

exponential time constants have been studied (11, 12) . For
all exponential fits, tmax should be at least three times the
longest relaxation time. Additionally, for monoexponential1 To whom correspondence should be addressed. Fax: (716) 477-7781.
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the extracted images are abstract and not strictly related to
any real physical parameters such as T2 or T1 .

In this article, we present a technique that overcomes
effects due to spin environment heterogeneity and extracts
pure T1 and T2 information. We have pursued an approach
similar to PCA, which is based upon a procedure developed
by Kubista (20, 21) and expressed in terms of the general-
ized rank annihilation method (GRAM) (22) . Kubista’s
technique was utilized previously by Schulze and Stilbs (23)
on a pulsed-gradient spin-echo (PGSE) NMR data set for
separating highly overlapped spectra. The experiment, how-
ever, required the use of a complicated data acquisition
scheme, which compromised the integrity of the spectral
bandshapes. Recently, Antalek and Windig (24, 25) utilized
the GRAM method on a PGSE NMR data set using a stan-
dard data acquisition scheme, which provided good lines-
hape results and is denoted as DECRA (direct exponential
curve resolution algorithm). The algorithm that we use for
the image analysis is based upon DECRA. The mathematical
procedure for DECRA and examples of the analysis for a
phantom are presented elsewhere (25, 26) . We report here
an example of DECRA applied to magnetic resonance (MR)

FIG. 1. TR/TE Å 1000/15 ms image of the imaged axial slice through images of the human head. Because of the nature of the
the brain.

mathematical approach (which models exponential func-
tions) , DECRA resolves pure components that are directly
related to physically real parameters that describe exponen-decays, the first data point should be approximately equal

to the shortest relaxation time. For biexponential curves, Dt tial functions (namely, T1 and T2) . The pure components
are few in number and are regarded as the primary compo-must be very short, and for multiexponential decay fits the

utility is questionable. nents which describe the vast majority of the image signal
distribution. Images that are reconstructed from the resolvedOwing to the complexity of the problem, researchers must

compromise and take advantage of available techniques in components multiplied by their respective proportionality
constants are virtually identical to the original images. Weorder to gain insight into the relaxation mechanisms in tis-

sues. T1 and T2 weighted images of the human body are provide a simple context based upon nonexchanging 1H envi-
ronments with which to describe the signal contribution ofroutinely acquired in clinical MRI (1) . These images are

easy to obtain, avoid the need for exponential fitting, and the resolved components to the MR images. It is our hope
that this paper will stimulate interest in the algorithm appliedprovide some insight into the gross variations in the tissue

T1 and T2 values. Calculated apparent monoexponential T1 to MR images. Such studies will further our ability to model
the complex spin system of tissues, which will in turn better(13) and T2 (14) images were used to study variations in

T1 , T2 , and spin density (r) of brain tissues (2) . These our understanding of disease.
images can take upwards of an hour to acquire correctly,
but clearly demonstrated the partial volume effect on the THEORY
measured relaxation times. Multiexponential and continuous
distributions analyses have been employed and begin to re- A standard spin-echo imaging sequence (1) is often used
veal the complexity of the spin system in biological tissues to produce images for calculating T1 and T2 . T1 is calculated
(7–9, 15) . These techniques require large amounts of data from a series of images with constant echo time, TE, and
because of the short Dt requirement that make it time con- variable repetition time, TR. T2 is calculated from a series
suming to collect with imaging techniques. of images with a constant TR and variable TE. Assuming

Another image analysis approach involves principal com- that the repetition time of a standard spin-echo imaging se-
ponent analysis (PCA). Geladi et al. (16–18) and Grahn quence is much larger than the echo time, the signal from
and Sääf (19) have utilized PCA for analyzing sets of corre- a voxel containing m nonexchanging 1H types is
lated MRI images. This method is fast, does not require a
large number of images, and results in a set of extracted S Å k ∑

m

rme0TE/T2m (1 0 e0TR/T1m ) , [1]
images that are based upon principal components. However,
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FIG. 2. Resolved component images from DECRA analysis applied to T2 image series using all 14 images. Component (a) C1 , T2 Å 22 ms; (b)
C2, T2 Å 64 ms; and (c) C3, T2 Å 290 ms.

where k is a proportionality constant. rm is the spin density T2 values. This relationship can best be seen by rewriting
Eq. [1] in terms of the i unique T1 and j unique T2 valuesof component m in the voxel with T1m and T2m . Since an

exponential relationship exists between the signal and the found by DECRA:
intrinsic sample parameters T1 and T2 , DECRA may be used
to extract images of the unique T1 and T2 values. These S Å k ∑

i

∑
j

ri , j(1 0 e0TR/T1 i )e0TE/T2 j . [2]
images are a function of the spin densities and the T1 and
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(I1r1,2 / I2r2,2 ) and (I1r1,3 / I2r2,3 ) . When we collect a T1

series by keeping TE constant, Eq. [2] becomes

S Å k[(J1r1,1 / J2r1,2 / J3r1,3 ) (1 0 e0TR/T11 )

/ (J1r2,1 / J2r2,2 / J3r2,3 ) (1 0 e0TR/T12 ) ] , [5]

where J1 Å e0TE/T21 , J2 Å e0TE/T22 , and J3 Å e0TE/T23 . The
TR Å ` calculated signals are (J1r1,1 / J2r1,2 / J3r1,3 ) and
(J1r2,1 / J2r2,2 / J3r2,3 ) .

Summarizing this example, the image intensity from
DECRA yields five components, C, given by Eqs. [6]–[10]:

C1 Å (I1r1,1 / I2r2,1 ) [6]

C2 Å (I1r1,2 / I2r2,2 ) [7]

C3 Å (I1r1,3 / I2r2,3 ) [8]

C4 Å (J1r1,1 / J2r1,2 / J3r1,3 ) [9]

C5 Å (J1r2,1 / J2r2,2 / J3r2,3 ) . [10]

In general, the spin densities may not be determined because
the number of unknowns exceeds the number of equations.
However, in specific cases the spin densities may be deter-
mined. For example, if C5 Å 0, then r11 , r12 , and r13 mayFIG. 3. (a) Exponential contribution profiles calculated from the T2 Å
be determined because all r, J , and I values must be positive22 ms (—), 64 ms (---) , and 290 ms (rrr) eigenvalues. The resolved

contributions representative of the first part of the split data set ( images 1– and TR and TE values can be chosen such that J and I are
14) are shown with the 1 symbols. The s symbols represent the contribu- not zero.
tions from the second part of the split data set ( images 2–15) and are
calculated by multiplying the contribution profile of the first data set by its
associated eigenvalue calculated by the algorithm. All values have been
normalized so that the sum of the three contribution profiles is equal to
that of the total signal intensity of the original set of images. (b) Resolved
contribution profile for a fourth component showing a noisy structure.

For example, if DECRA finds two T1 and three T2 eigen-
values for the image space, there are six possible unique
spin components in the image and Eq. [2] becomes

S Å k[r1,1 (1 0 e0TR/T11 )e0TE/T21 / r1,2 (1 0 e0TR/T11 )

1 e0TE/T22 / r1,3 (1 0 e0TR/T11 )e0TE/T23

/ r2,1 (1 0 e0TR/T12 )e0TE/T21 / r2,2 (1 0 e0TR/T12 )

1 e0TE/T22 / r2,3 (1 0 e0TR/T12 )e0TE/T23 ] . [3]

When we collect a T2 series by keeping TR constant,

S Å k[(I1r1,1 / I2r2,1 )e0TE/T21 / (I1r1,2 / I2r2,2 )

1 e0TE/T22 / (I1r1,3 / I2r2,3 )e0TE/T23 ] , [4]

where I1 Å (1 0 e0TR/T11 ) and I2 Å (1 0 e0TR/T12 ) . The TE FIG. 4. A TR/TE Å 1000/15 ms image reconstructed from the three
T2 resolved images of the DECRA analysis. Compare directly with Fig. 1.Å 0 calculated signals from DECRA are (I1r1,1 / I2r2,1 ) ,
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FIG. 5. Resolved component images from DECRA analysis applied to T1 image series using all 15 images. Component (a) C4 , T1 Å 0.92 s; (b)
C5 , T1 Å 7.0 s.

MATERIALS AND METHODS image sets in order to extract the principal T2 and T1 compo-
nents present, as well as the representative images displaying
the relative quantity of each component in a voxel. The 256A GE Signa (GE Medical Systems, Milwaukee, WI) 1.5-T
1 256 pixel images were unfolded and processed as awhole body imager employing a standard single-slice, single-
65,536-element array. Two image sets for each of the imageecho, spin-echo pulse sequence and quadrature birdcage-style
series were organized for input to DECRA. For the T2 series,RF head coil was used to acquire axial magnetic resonance
the two data sets were the variable TE images 1–13 and 2–images of the brain. The image plane passed through the head
14. For the T1 series, the two data sets were the variableof the age 42 y, healthy male volunteer at the level of the
TR images 1–14 and 2–15. As a demonstration of the utilitylateral ventricles. (See Fig. 1 for a TR/TE Å 1000/15 ms
of DECRA on smaller data sets, a T2 analysis using twoimage of the slice location and anatomy.) This slice contained
alternative data sets, images 1, 4, 7, 10 and 4, 7, 10, 13, wassix primary tissue types: cerebral spinal fluid (CSF), gray mat-
conducted. The DECRA analysis is run using MATLABter, white matter, meninges, adipose, and muscle. Two sets of
(The MathWorks, Inc., Natich, MA) running on a 90-MHzimages were acquired of this slice: a set used to calculate T2

Pentium (Intel Corp., Santa Clara, CA) with 64 MB ofin which the echo time (TE) was varied, and a set used to
memory and takes about 40 s for each image series. Thecalculate T1 in which the repetition time (TR) was varied. The
exponential constants T1 and T2 are derived from the eigen-T2 image set consisted of 14 images with a fixed TR Å 1000
values found from the analysis. More details of the datams, and a TE which varied between 15 and 210 ms in 15-ms
processing are given elsewhere (25, 26) .steps. The T1 image set consisted of 15 images with a fixed

TE Å 15 ms, and a TR which varied between 200 and 3000
ms in 200-ms steps. Each 24-cm field of view, 5-mm slice
thickness image was acquired with 256 phase encoding steps RESULTS AND DISCUSSION
to form a 256 1 256 pixel image. The motion of the volunteer
was found to be minimal during the course of data collection, The main thrust of this report is to demonstrate a novel

processing algorithm that, when applied to a multivariateso no attempt was made to register the pixels within the series
of correlated brain images. image data set, will extract unique components in the form

of images and their contribution in the original data set.The image slice is treated as a mixture of principal T1

and T2 components. DECRA was applied to the T2 and T1 The contribution is based upon an exponential relationship
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to as components C1, C2, and C3, have T2 values of 22, 64,
and 290 ms, respectively. Images representing the amount
of each component in the signal are presented in Fig. 2. C1

(Fig. 2a) is found predominantly in meninges, muscle, and
adipose tissue. C2 (Fig. 2b) is present largely in approxi-
mately equal amounts in gray and white matter, and to a
lesser extent in meninges, muscle, and adipose tissue. C3

(Fig. 2c) is found extensively in CSF. Although a biological
classification is tempting, it is important to realize that the
resolved components are defined by a pure exponential decay
with its associated T2 value. Tissue types are complicated
mixtures that are composed largely of common building
blocks such as intracellular and extracellular water and lipid
membranes that can describe the majority of the relaxation
behavior. Further work is required to assign the resolved
components to a specific material.

The exponential contribution profiles for the three T2 com-
ponents are shown in Fig. 3a. The resolved contributions
representative of the first ( images 1–13) part of the split data
set overlaps favorably with that from the second (images 2–
14) part of the split data set, calculated by multiplying the
contribution profile of the first data set by its associated
eigenvalue. This clearly shows that the assumption of pro-
portionality between the points is correct. The lines drawn
through the points are calculated directly from the eigenval-
ues and the normalization factor used for the contribution

FIG. 6. (a) Resolved contribution profiles of the two components repre- data. Figure 3b shows the resolved contribution profile for
sented in Fig. 5. Components C4 , T1 Å 0.92 s (—), and C5 , T1 Å 7.0 s a fourth component (when the data set is analyzed by choos-
(---) . (b) The resolved contribution profile for a third component showing ing four components) . Obviously, the profile is dominated
an increasing exponential.

by noise and does not represent a pure component.
Figure 4 is the first image of the TE series (TR/TE Å

1000/15) reconstructed using the component images of C1,
C2, and C3 resolved by DECRA. This image can be com-between the signal and a known set of acquisition parame-

ters. Hence, a contribution profile is extracted which is expo- pared directly with the image in Fig. 1.
DECRA was applied to the T1 image set and two compo-nential in nature. The original data set can be reconstructed

from the product of the extracted images and their corre- nents, referred to as C4 and C5, were found. C4 had a T1 of
0.92 s, while C5 had a T1 of 7.0 s. It is noted that a T1 valuesponding signal profiles. We have used both T1 and T2 to

elucidate the components. In our examples the signal within of 7.0 s appears to be unrealistic (e.g., we should expect a
value near 3 s for water at room temperature) . However,the resolved (extracted) images are representative of a com-

ponent having a unique T1 or T2 value. others (2, 13) have reported long T1 values in excess of 5
s for CSF using a saturation recovery pulse sequence at aSelecting the number of components is a subjective aspect

of the analysis at this time. The choice presents itself clearly, field strength of 1.5 T. They attributed this to a saturation
effect arising from the flowing CSF. Images representinghowever. There are several criteria to examine when estab-

lishing the number of components present in a given data the amount of each component in the signal are presented
in Fig. 5. C4 (Fig. 5a) is found in the gray and white brainset: (1) the pixel intensities and contribution profiles must

be positive; (2) the noise level in the images and contribution matter, and in the adipose and muscle tissues. The largest
concentration of C4 appears to be in the adipose tissue. Theprofiles should be low; (3) the relative contribution of the

component must be significant; and (4) the functional form concentration of C4 immediately adjacent to the folds in the
gray matter is less than in deeper gray matter and whiteof the contribution profile needs to fit the model. Generally,

a combination of these criteria need to be used. matter of the brain. C5 (Fig. 5b) is found predominantly in
the CSF occupying both the ventricles and the folds in theDECRA was applied to the T2 image set and three compo-

nents were found. With each component there is associated gray matter. This component also appears to be present in
the gray matter adjacent to the folds, but to a lesser concen-both a T2 value and an image. The three components, referred
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TABLE 1
Tissue Parameters of the Six Hydrogen Environments Found in Imaged Tissues

T1i, T2j Environment

i, j 1,1 1,2 1,3 2,1 2,2 2,3
T1 (s) 0.92 0.92 0.92 7.0 7.0 7.0
T2 (ms) 22 64 290 22 64 290 Monoexponential

Tissue r1,1 r1,2 r1,3 r2,1 r2,2 r2,3 T1 (s) T2 (ms)

CSF 0 0 0 0 0 1.0 4.80 425
Gray matter 0 0.5 0 0 0.5 0 1.42 73
White matter 0 0.7 0.3 0 0 0 0.85 73
Muscle 0.35 0.15 0 0.45 0.05 0 1.42 53
Meninges 0.45 0.4 0.15 0 0 0 0.66 48
Adipose 0.45 0.35 0.2 0 0 0 0.34 71

tration than in pure CSF. DECRA did find some of C5 in from the long alkyl chains in the fat and lipid tissues. The
fat and muscle tissue are highlighted. T2 values are primar-the tissues outside of the skull.

The exponential contribution profiles for the two T1 com- ily shorter for these environments because of restricted mo-
lecular mobility.ponents are shown in Fig. 6a. For the resolution of the T1

image series, a transformation of the data set is required The three T2 and two T1 components can, as described in
the theory section, represent six unique hydrogen environ-(26) . This results in correct (for the original data) images

but transformed contribution profiles. The exponential con- ments. The relaxation times of these environments are sum-
marized in Table 1. Fletcher et al. (2) have establishedtribution profiles of the entire original data set are calculated

as the contributions of the resolved images in this data set. ranges for the monoexponential constants for the six tissues
in our imaged slice and have segmented these tissues usingAs a consequence, we have a single exponential contribution

profile for each component instead of two overlapping pro- these ranges. For comparison purposes, we have used their
technique to calculate monoexponential T1 and T2 constantsfiles. The lines drawn through the points are calculated di-

rectly from the eigenvalues and the normalization factor used for the six tissues in our imaged slice. The mean values for
the six tissues are also listed in Table 1. Their techniquefor the contribution data. Figure 6b shows the resolved con-

tribution profile for a third component (when the data set is was also used to help identify the locations of the six tissues
in our image slice. It is possible, using this a priori knowl-analyzed by choosing three components) . Although the pro-

file is not dominated by noise, as was the case shown in edge of the location of the six tissue types found in this
slice, to determine the relative amounts of the six identifiedFig. 3b, it does have a higher noise level than the other two

components and has a relative mean value of less than 0.6% hydrogen environments in the tissues. Values C1–C5 for
each tissue were then found and Eqs. [6] – [10] used toof the other two components. The contribution profile is

characterized by an increasing exponential which does not determine the approximate fraction of ri , j in each tissue. The
ri , j values for CSF, white, gray, meninges, adipose, andfit the model of T1 relaxation. Furthermore, the resultant

image is dominated by noise with equal positive and negative muscle tissues are presented in Table 1.
CSF consists of one unique hydrogen spin environment withcontributions.

The resultant images based upon the DECRA analysis T1 Å 7.0 s and T2 Å 290 ms. No other tissue type contains
this type of hydrogen environment. Gray matter is surroundedare significantly different from the T1 or T2 images obtained

through single-exponential fitting routines of registered by and in direct contact with this type of hydrogen environment,
but gray matter itself is not composed of this type of hydrogenpixels within image data sets. The single-exponential fit

results in a value representative of a linear combination of environment. Gray matter is composed of an approximately
equal amounts of two environments: T1 Å 7.0 s, T2 Å 64 ms;exponential time constants for all of the various 1H environ-

ments represented in the volume element. DECRA extracts and T1 Å 0.92 s, T2 Å 64 ms. White matter is composed of
approximately 70% T1 Å 0.92 s, T2 Å 64 ms, and 30% T1 Åindependent exponential values and renders images based

upon these pure values. Tissues are not necessarily seg- 0.92 s, T2 Å 290 ms hydrogen environments.
Meninges were composed of approximately 45% T1 Å 0.92mented in this fashion, but 1H nuclear environments are.

For example, the component with the shortest T2 , Fig. 2a, s, T2 Å 22 ms, 40% T1 Å 0.92 s, T2 Å 64 ms, and 15% T1 Å
0.92 s, T2 Å 290 ms environments. Adipose tissue also con-most likely represents predominantly the methylene signal
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FIG. 7. Resolved images from DECRA analysis applied to T2 image series using only images 1, 4, 7, 10, 13. Component (a) C1 , T2 Å 16 ms; (b)
C2 , T2 Å 63 ms; and (c) C3 , T2 Å 260 ms.

tained three environments: 45% T1 Å 0.92 s, T2 Å 22 ms, 35% uncertainty in the composition of the muscle, meninges, and
adipose tissue environments is greater than that of the CSF,T1 Å 0.92 s, T2 Å 64 ms, and 20% T1 Å 0.92 s,

T2 Å 290 ms. Muscle tissue contained four environments: 35% gray matter, and white matter because of the smaller amounts
of these tissues and chemical shift artifacts in the thin closelyT1 Å 0.92 s, T2 Å 22 ms, 15% T1 Å 0.92 s, T2 Å 64 ms, 45%

T1 Å 7.0 s, T2 Å 22 ms, and 5% T1 Å 7.0 s, T2 Å 64 ms. The spaced layers of adipose and muscle tissues outside of the skull.
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A major advantage of DECRA is that it is a multivariate ACKNOWLEDGMENT
method; in other words, it uses all the pixels simultaneously.

The authors thank Dr. Saara M. Totterman, Director of the MagneticTherefore, in principle, only a few images are required for
Resonance Imaging Center at the University of Rochester Medical School,

the analysis. Figure 7 shows the results of DECRA applied for providing imaging time for this study.
to images 1, 4, 7, 10, 13 of the T2 image set. The results are
very comparable with those resulting from the analysis of all REFERENCES
14 images. Although five single-echo images were used to

1. D. D. Stark and W. G. Bradley, ‘‘Magnetic Resonance Imaging,’’calculate these eigen images, a single multiecho sequence
2nd Ed., Mosby, St. Louis (1992).might be used, thus reducing image acquisition time.

2. L. M. Fletcher, J. B. Barsotti, and J. P. Hornak, Magn. Reson. Med.
29, 623–630 (1993).

3. J. Ma, F. W. Wehrli, H. K. Song, and S. N. Hwang, J. Magn. Reson.
125, 92–101 (1997).

CONCLUSIONS
4. R. J. Ordidge, J. Gorell, J. Deniau, R. A. Knight, and J. A. Helpern,

Magn. Reson. Med. 32, 335 (1994).

5. M. Just and M. Thlen, Radiology 169, 779–785 (1988).We have demonstrated the use of an algorithm based upon
6. Y.-H. Kao, J. A. Sorenson, M. M. Bahn, and S. S. Winkler, Magn.three-way mode analysis that, when applied to a multivariate

Reson. Med. 32, 342–357 (1994).image data set, successfully separates components which are
7. J-P. Armsach, D. Gounot, L. Rumbach, and J. Chambron, Magn.directly related to pure and unique exponential constants.

Reson. Imag. 9, 107–113 (1991).These resolved components represent the primary compo-
8. R. M. Kroeker and R. M. Henkelman, J. Magn. Reson. 69, 218–nents within the data. The use of single exponentials resulted 238 (1986).

in a model that reconstructs the original data almost exactly. 9. A. E. English, M. L. G. Joy, and R. M. Henkelman, Magn. Reson.
Deviations from this model, such as profiles of multiexpo- Med. 21, 264–281 (1991).
nential character, are within the noise level and as a conse- 10. H. Peemoeller, M. M. Pintar, and D. W. Kydon, Biophys. J. 29, 427
quence cannot be distinguished from a model described by (1980).
single exponentials. This approach has several advantages. 11. E. A. Guggenhem, Phil. Mag. [7 ] 2, 538–543 (1926).

It is fast. A full image data set composed of 15 256 1 12. J. R. Wolberg, ‘‘Prediction Analysis,’’ Van Nostrand, Princeton, NJ
(1967).256 pixel images can be processed in 40 s using MATLAB

13. J. Gong and J. P. Hornak, Magn. Reson. Imaging 10, 623–626running on a 90-MHz, Pentium processor–based computer.
(1992).The algorithm arrives at a solution directly; no iterative ex-

14. X. Li and J. P. Hornak, J. Imaging Sci. Tech. 38, 154–157 (1994).ponential fitting is performed. Although all 15 images were
15. K. P. Whittall, M. J. Bronskill, and R. M. Henkelman, J. Magn. Re-used in this study, very good results were obtained by analyz-

son. 95, 221–234 (1991).
ing only five images. The advantage here is that only a small

16. H. Grahn, N. M. Szeverenyi, M. W. Roggenbuck, F. Delaglio, and
number of images are needed for the analysis, depending P. Geladi, Chemom. Intell. Lab. Syst. 5, 209–220 (1989).
upon the number of components present. DECRA in princi- 17. H. Grahn, N. M. Szeverenyi, M. W. Roggenbuck, F. Delaglio, and
ple may be applied to any data set that is correlated with an P. Geladi, Chemom. Intell. Lab. Syst. 5, 311–322 (1989).
exponential function. Therefore, it may be used to resolve 18. H. Grahn, N. M. Szeverenyi, M. W. Roggenbuck, and P. Geladi,

Chemom. Intell. Lab. Syst. 7, 87–93 (1989).components based upon diffusivity, T*2 , or dynamic contrast.
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